Exercise 5

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-4 y^{\prime}+5 y=e^{-x}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-4 y_{c}^{\prime}+5 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-4\left(r e^{r x}\right)+5\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-4 r+5=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{4 \pm \sqrt{16-4(1)(5)}}{2}=\frac{4 \pm \sqrt{-4}}{2}=2 \pm i \\
r=\{2-i, 2+i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(2-i) x}$ and $e^{(2+i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{(2-i) x}+C_{2} e^{(2+i) x} \\
& =C_{1} e^{2 x} e^{-i x}+C_{2} e^{2 x} e^{i x} \\
& =e^{2 x}\left(C_{1} e^{-i x}+C_{2} e^{i x}\right) \\
& =e^{2 x}\left[C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x)\right] \\
& =e^{2 x}\left[\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x\right] \\
& =e^{2 x}\left(C_{3} \cos x+C_{4} \sin x\right) .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+5 y_{p}=e^{-x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is an exponential function, the particular solution is $y_{p}=A e^{-x}$.

$$
y_{p}=A e^{-x} \quad \rightarrow \quad y_{p}^{\prime}=-A e^{-x} \quad \rightarrow \quad y_{p}^{\prime \prime}=A e^{-x}
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
A e^{-x}-4\left(-A e^{-x}\right)+5\left(A e^{-x}\right)=e^{-x} \\
10 A e^{-x}=e^{-x}
\end{gathered}
$$

Match the coefficients on both sides to get an equation for A.

$$
10 A=1
$$

Solving it yields

$$
A=\frac{1}{10},
$$

which means the particular solution is

$$
y_{p}=\frac{1}{10} e^{-x} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =e^{2 x}\left(C_{3} \cos x+C_{4} \sin x\right)+\frac{1}{10} e^{-x}
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants.

